Grundlagen Trigonometrie

Course ID Course Professor Time Location
Grundlagen Trigonometrie -

 

Trigonometrie

 

 

Weitere Beziehungen

sin²α + cos²α = 1

cos²α – sin²α = cos2α

2 + sin²α – 2cos²α = 3sin²α

sinα * cosα = [sin2α]/2

3sinα – 4 sin³α = 3sinα

4cos³α – 3cosα = cos3α

2tanα/(1 – tan²α) = tan2α

(3tanα -tan³α)/(1 – tan²α) = tan3α

(1 – cosα)/2 = sin²(α/2)

(1 + cosα)/2 = cos²(α/2)

(1 – cosα)/(1 + cosα) = tan²(α/2)

(1 – cosα)/sinα = sinα/(1 + cosα) = tan(α/2)

tanα * cotα = 1

1/cos²α = 1 + tan²α

1 /sin²α = 1 + cot²α

 

Additionstheoreme

sin(90° – α) = sin(90° + α) = cos(360° – α) = cos(-α) = cosα

cos(180° –  α) = cos(180° + α) = -cosα

sin(180° – α) = cos(90° – α) = sinα

sin(180° + α) = sin(360° – α) = sin(-α) = -sinα

tan(180° – α) = cot(90 + α) = tan(-α) = -tanα

tan(90 + α) = cot(180 – α) = cot(-α) = -cotα

sin(α +/- β) = sinα*cosβ +/- cosα*sinβ

cos(α +/- β) = cosα*cosβ -/+ sinα*sinβ

tan(α +/- β) = (tanα +/- tanβ)/(1 -/+ tanα*tanβ)

sinα + sinβ = 2sin[(α + β)/2]*cos[(α – β)/2)]

sinα – sinβ = 2cos[(α + β)/2]*sin[(α – β)/2]

cosα + cosβ = 2cos[(α + β)/2]*cos[(α – β)/2]

cosα – cosβ = -2sin[(α + β)/2]*sin[(α – β)/2]

 

Substitution

sinα, cosα, tanα und cotα kann man auch in substituierter Form darstellen.

Zuerst ersetze man

tan(α/2) = u

Die bereits oben erwähnten Beziehungen lauten:

(1 – cosα)/(1 + cosα) = tan²(α/2) = u²

und

(1 – cosα)/sinα = sinα/(1 + cosα) = tan(α/2) = u

wir lösen

(1 – cosα)/(1 + cosα)

nach cosα auf und erhalten:

1 – cosα = u² + u²cosα

u² + u²cosα + cosα = 1

cosα(u² + 1) = 1 – u²

cosα = (1 – u²)/(1 + u²)

nun ersetze man cosα von

(1 – cosα)/sinα = tan(α/2) = u durch (1 – u²)/(1 + u²)

und löst nach sinα auf:

[1- (1 – u²)/(1 + u²)]/sinα = u

mit sinα multiplizieren, ergibt:

[1- (1- u²)/(1 + u²)] = u*sinα

rechts in einen Bruch mit gemeinsamen Nenner umwandeln:

[(1 + u²) – (1 – u²)]/(1 + u²) = u*sinα

rechts Zähler: Klammern weglassen und ausaddieren (Achtung Minuszeichen -,-u² = +u²!)

2u²/(1 + u²) = u*sinα

links und rechts durch u dividieren und rechts durch u kürzen:

2u/(1 + u²) = sinα

oder

sinα = 2u/(1 + u²)

tanα erreicht man indem man

sinα/cosα

dividiert, also

2u/(1 + u²) / (1 – u²)/(1 + u²) = sinα/cosα = tanα

daraus folgt durch Bruchdivision:

2u(1 + u²)/(1 + u²)(1 – u²) = tanα

kürzen durch (1 + u²):

tanα = 2u/(1 – u²)

und schliesslich

cotα = cosα/sinα = 1/tanα = (1 – u²)/2u

Zusmmengefasst:

sinα = 2u/(1 + u²)

cosα = (1 – u²)/(1 + u²)

tanα = 2u/(1 – u²)

cotα = (1 – u²)/2u

 

Weitere Beziehungen in der Geometrie

A = α, B = β, C = γ

Der Sinussatz:

a/sinα = b/sinβ = c/sinγ

Der Cosinussatz:

Beim rechtwinkligen Dreieck gilt für die Berechnung der Kantenlänge c Pytagoras:

+ =

Falls Winkel > 0, < 180 und ≠ 90° ist, wird c mit Consinussatz berechnet:

+ 2abcosγ =

Trigonometrie findet weitreichende Anwendung in Mathematik und Physik.

Winkelsätze beim rechtwinkligen Dreieck

a = csinα

b = ccosα

a = btanα

b = acotα

 

Weitere Beziehungen

sinα = a/c = cosβ

cosα = b/c = sinβ

tanα = a/b = cotβ

cotα = b/a = tanβ

Literaturhinweis:

Formeln und Tafeln, Mathematik-Physik, 3. Auflage 1984, Orell Füssli Verlag Zürich

 

 

 

 

 

 

 

 

 

 

 

 

 


Leave a Reply

Your email address will not be published. Required fields are marked *